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Strongly non-Gaussian ensembles of large random matrices possessing unitary symmetry and logarithmic
level repulsion are studied both in the presence and the absence of a hard edge in their energy spectra.
Employing a theory of polynomials orthogonal with respect to exponential weights we calculate with an
asymptotic accuracy the two-point kernel over all distance scale, and show that in the limit of large dimensions
of random matrices the properly rescaled local eigenvalue correlations are independent of level confinement
while global smoothed connected correlations depend on confinement potential only through the end points of
the spectrum. We also obtain the exact expressions for density of levels, one- and two-point Green’s functions,
and prove that a universal local relationship exists for the suitably normalized and rescaled connected two-
point Green’s function. The connection between the structure of the Szego¨ function entering strong polynomial
asymptotics and mean-field equation is traced.@S1063-651X~96!00807-0#

PACS number~s!: 05.45.1b, 05.40.1j

I. INTRODUCTION

Statistical properties of complex physical systems can
successfully be investigated within the framework of the
random-matrix theory~RMT! @1#. It turned out to be quite
general and a powerful phenomenological approach to a de-
scription of the various phenomena in such diverse fields as
two-dimensional gravity@2#, quantum chaos@3#, complex
nuclei @4#, and mesoscopic physics@5#.

In all the realms mentioned above the physical systems
can be described with the help of different matrix models
whose structures depend on physical properties of the sys-
tems involved. In the applications of the RMT to the com-
plex quantum-mechanical objects the real Hamiltonian is
rather intricate to be handled or simply unknown. In such
situations the integration of the exact equations is replaced
by the study of the joint distribution functionP@H# of the
matrix elements of the HamiltonianH. If there is not pref-
erential basis in the space of matrix elements~i.e., the system
in question is ‘‘as random as possible,’’ and equal weight is
given to all kinds of interactions! one has to require
P@H#d@H# to be invariant under similarity transformation
H→R21HR, with R being orthogonal, unitary, or a sym-
plectic n3n matrix reflecting the fundamental symmetry of
the underlying Hamiltonian. The general form ofP@H# com-
patible with invariance requirement is

P@H#5Z21exp$2trV@H#%, ~1!

with arbitrary V@H# providing existence of the partition
function Z. Introducing the matrixSb that diagonalizes the
HamiltonianH, H5Sb

21XSb , and carrying out the integra-
tion over the orthogonal (b51), unitary (b52), or sym-
plectic (b54) group dm(Sb) in the construction

P@H#d@H#, one obtains the famous expression for the joint
probability density function of the eigenvalues$x% of the
matrix H

P~$x%!5Z21expH 2bF(
i
V~xi !2(

i, j
lnuxi2xj uG J . ~2!

The level repulsion described by the logarithmic term is
originated from the Jacobian) i, j uxi2xj ub arising when
passing from the integration over independent elementsHi j
of the HamiltonianH to the integration over a smaller space
of its n eigenvalues$x%. The confinement potentialV(x),
which determines~together with the logarithmic law of level
repulsion! the mean-level density, contains information
about correlations between the different matrix elements of a
random HamiltonianH. @Note that parameterb is factored
out fromV@H# in Eq. ~1! to fix the density of levels in the
random-matrix ensembles with the same confinement poten-
tial but with different underlying symmetries.#

In the matrix formulation given above the eigenvalues
$x% of the HamiltonianH run from 2` to 1`. Formally,
the same matrix model Eq.~2! appears in the so-called maxi-
mum entropy models constructed to describe the transport
properties of mesoscopic systems. In this case there is an
additional positivity constraint on$x%, x>0, that directly
follows from the unitarity of the scattering matrix@5,6# and
introduces the hard edge into the eigenvalue spectrum.

In the unitary case (b52), which applies to the physical
systems with broken time-reversal symmetry, the structure of
Eq. ~2! allows one to representexactly all the global and
local statistical characteristics of the physical system, such as
the averaged density of levels,n-point correlation functions,
level-spacing distribution function, etc., in terms of the poly-
nomials orthogonal with respect to the weight function
w(x)5exp$22V(x)% on the whole real axisR ~or onR1 if
there is a hard edge in the eigenvalue spectrum!. @Otherwise,
whenb51 orb54 more complicated sets of skew orthogo-
nal polynomials should be introduced@7#.#
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Analytical calculation of the corresponding set of or-
thogonal polynomials is a nontrivial problem. However, if
the elementsHi j of the random-matrixH are believed to be
statistically independent from each other, one obtains the
quadratic confinement potentialV(x);x2 @8# leading to the
Gaussian invariant ensembles of random matrices. In such a
case there are significant mathematical simplifications allow-
ing one to solve the matrix model Eq.~1! completely@1#.

From the very beginning it was understood@9# that a re-
quirement of the statistical independence of the matrix ele-
mentsHi j is not motivated by the first principles, and, there-
fore, several attempts were undertaken to elucidate an
influence of a particular form of confinement potential on the
predictions of the random-matrix theory developed for
Gaussian ensembles.

Two essentially different lines of inquiries of this problem
can be distinguished. The first line lies in the framework of
the polynomial approach, while a second one consists of the
developing of a number of approximate methods. The mean-
field approximation proposed by Dyson@10# allows us to
calculate density of levels in a random-matrix ensemble.
This approach being combined with the method of the func-
tional derivative of Beenakker@11,12# makes it possible to
compute global~smoothed! eigenvalue correlations in large
random matrices. Smoothed correlations can also be ob-
tained by the diagrammatic approach of Bre´zin and Zee@13#
and by invoking the linear response arguments and macro-
scopic electrostatics@14#. We stress that all the methods
mentioned above allow us to study correlations only in the
long-range regimeand, in this sense, they are less informa-
tive as compared with the method of orthogonal polynomials
@1#. It is worth pointing out the supersymmetry formalism
@15#, recently developed for matrix model Eq.~1! with the
non-Gaussian probability distribution functionP@H#, which
is exceptional in that it allows us to investigatelocal eigen-
value correlations and represents a powerful alternative ap-
proach to the classical method of orthogonal polynomials.

In the framework of the polynomial approach there was a
number of studies to go beyond the Gaussian distribution
P@H#. In Refs. @16–18# it was found out that the unitary
random-matrix ensembles associated with classical orthogo-
nal polynomials exhibit Wigner-Dyson level statistics~for
corresponding ensembles with orthogonal and symplectic
symmetry see Ref.@19#!. Non-Gaussian unitary random-
matrix ensembles associated with~symmetric! strong con-
finement potentialsV(x)5x21gx4 and V(x)5(n51

n5panx
2n

were treated in Refs.@7# and@20#, respectively.~We note that
both potentials mentioned above are stronger than quadratic,
and they do not refer to the maximum entropy models.! As
far as these works have been based on differentconjectures
about the functional form of asymptotics of polynomials or-
thogonal with respect to a non-Gaussian measure, and the
problem of the hard edge in the eigenvalue spectrum was out
of their scope, the polynomial approach to the basic prob-
lems of the random-matrix theory needs further and more
rigorous study.

The purpose of the present work is to show that the prob-
lem of non-Gaussian ensembles with unitary symmetry can
be handled rigorously by the method of orthogonal polyno-
mials. Our treatment is exact~i.e., it does not involve any
conjectures! and based on the recent results obtained in the

theory of polynomials orthogonal with respect to exponential
weights onR. It applies to a very large class of confinement
potentials which is much richer than that considered in Refs.
@7,20# and allows us also to treat the matrix models with
positivity constraints on the eigenvalue spectrum. We con-
centrate on the calculations of the density of levels, one- and
two-point Green’s functions, the two-point kernel, and the
connected ‘‘density-density’’ correlation function over the
all distance scale. This allows us to resolve the problem of
universality for local and global correlations of the random-
matrix eigenvalues and to establish a universal local relation-
ship for properly normalized and rescaled connected two-
point Green’s function. One of the interesting points we
would like to stress is that the mean-field approximation,
widely used in the theory of random matrices, naturally ap-
pears in our treatment without any physical speculations and
turns out to be closely allied with the structure of the Szego¨
function entering strong pointwise asymptotics of orthogonal
polynomials.

The paper is organized as follows. Section II contains a
short introduction to the theory of polynomials orthogonal
with respect to the Freud weights. The asymptotic formula
for the orthonormal ‘‘wave function’’ that we need in later
sections is given there. In Sec. III we calculate the two-point
kernel and resolve the problem of universality of level sta-
tistics. The density of levels and the one-point Green’s func-
tion are computed in Sec. IV. Connection between the struc-
ture of the Szego¨ function and the mean-field equation is
established there as well. Section V is devoted to the calcu-
lation of the two-point connected Green’s function; a corre-
sponding universal local expression is given. Section VI con-
tains generalizations of the results obtained in the preceding
sections for a wider class of random matrices characterized
by an Erdo¨s-type confinement potential. In Sec. VII we
present a treatment of the maximum entropy models with a
hard edge. Finally, in Sec. VIII we discuss the results ob-
tained.

II. FREUD-TYPE CONFINEMENT POTENTIALS AND
CORRESPONDING ORTHOGONAL POLYNOMIALS

Let us consider a class of symmetric~even! confinement
potentials V(x) supported on the whole real axisx
P(2`,1`) which areof smooth polynomial growth at in-
finity and increase there at least asuxu11d (d is an arbitrary
small positive number!. More precisely, we demand that
V(x) and d2V/dx2 be continuous inxP(0,1`), and
dV/dx.0 in the same domain of variablex. We also as-
sume that for someA.1 andB.1 the inequality

A<11x
d2V/dx2

dV/dx
<B ~3!

holds for xP(0,1`), and also forx positive and large
enough

x2
ud3V/dx3u
dV/dx

<const. ~4!

The class of potentialsV(x) satisfying all the above require-
ments is said to be of theFreud type@21#. The typical ex-
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amples of the Freud potentials are~i! V(x)5uxua with
a.1, and~ii ! V(x)5uxualnb(g1x2) with a.1, bPR, and
g large enough.

Now it is convenient to introduce a set of polynomials
Pn(x) orthogonal with respect to the Freud~non-Gaussian!
measuredaF(x)5 wF(x)dx5exp@22V(x)#dx,

E
2`

1`

Pn~x!Pm~x!daF~x!5dnm , ~5!

for which the following basic result was obtained by Lubin-
sky @21#:

lim
n→`

E
21

11

dlHAanPn~anl!

2S 2p D 1/2ReFznD22S Fn ;
1

zD G J 2wF~anl!50. ~6!

Here parametrizationz5eiu andl5cosu was used.
The Szego¨ function D(g;z), appearing in Eq.~6!, is of

fundamental importance in the whole theory of orthogonal
polynomials@22#, and takes the form

D~g;z!5expS 1

4pE2p

1p

dw
11ze2 iw

12ze2 iw lng~w! D . ~7!

The first argument of the Szego¨ function in Eq.~6! is

Fn~w!5exp@2V~ancosw!#usinwu1/2, ~8!

andan is thenth Mhaskar-Rahmanov-Saff number being the
positive root of the integral equation@23#

n5
2an
p E

0

1 ldl

A12l2 S dVdxD
x5anl

. ~9!

~In what follows it will be seen thatan is none other than the
band edge for eigenvalues of the corresponding random-
matrix ensemble.!

Equation~6! may be rewritten in a different form passing
on to the integration overx5anl ~so that parametrization
x5ancosu takes place!

lim
n→`

E
2an

1an
dxH Pn~x!2S 2

pan
D 1/2ReFznD22S Fn ;

1

zD G J 2wF~x!

50. ~10!

Analogously, Eq.~9! reads

n5
2

pE0
an xdx

Aan22x2
dV

dx
. ~11!

Since from Eq.~11! it follows that limn→`anÞ0, we imme-
diately conclude that the expression in the parentheses of Eq.
~10! asymptotically tends to zero asn→` on the interval of
integrationuxu,an . If one is not interested in the remainder
term, we arrive at the asymptotic formula for orthogonal
polynomials of the Freud type:

Pn~x!5A 2

pan
ReFznD22S Fn ;

1

zD G , xP~2an ,1an!.

~12!

The Szego¨ functionD(g;eiu) may be represented as@24#

D~g;eiu!5Ag~u!exp@ iG~g;u!#, ~13!

where

G~g;u!5
1

4pE2p

1p

dwcotS u2w

2 D @ lng~w!2 lng~u!#.

~14!

Making use of the representation of Eqs.~13! and~14!, not-
ing thatFn(2w)5Fn(w) andG(Fn ;2u)52G(Fn ;u), we
obtain

DS Fn ;
1

zD5expS 2
1

2
V~ancosu! D usinuu1/4

3exp@2 iG~Fn ;u!#. ~15!

Then, Eqs.~12! and ~15! yield

Pn~ancosu!5A2/pan
exp@V~ancosu!#

usinuu1/2
cos@nu1G~Fn

2 ;u!#,

~16!

where

G~Fn
2 ;u!5

1

4pE2p

1p

dw cotS u2w

2 D @ lnFn
2~w!2 lnFn

2~u!#

5
1

4pE0
p

dw@ lnFn
2~w!2 lnFn

2~u!#

3H cotS u2w

2 D1cotS u1w

2 D J
5

1

2pE0
p

dw@ lnFn
2~w!2 lnFn

2~u!#
sinu

cosw2cosu
.

~17!

Introducing the new variable of integrationj5ancosw and
using parametrizationx5ancosu (uxu,an), we get

gn~x!5G~Fn
2 ;u!ux5ancosu

5
1

2pE2an

1an
dj

~an
22x2!1/2

~an
22j2!1/2

h~j!2h~x!

j2x
, ~18!

with

h~j!522V~j!1
1

2
lnF12S j

an
D 2G . ~19!

Since foruxu,an

PE
2an

1an dj

~j2x!~an
22j2!1/2

50 ~20!
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~here P stands for principal value of an integral!, Eq.~18! can
be rewritten in the form

gn~x!5
1

2p
PE

2an

1an
dj

~an
22x2!1/2

~an
22j2!1/2

h~j!

j2x
. ~21!

Then we obtain the following asymptotic formula for the
orthonormal ‘‘wave functions’’ cn(x)5Pn(x)exp@2V(x)#
that we need in what follows:

cn~x!5A2/panF12S xanD
2G21/4

cosFn arccosS xanD1gn~x!G .
~22!

We remind you that Eq.~22! is valid for uxu,an in the limit
n→`.

III. TWO-POINT KERNEL AND UNIVERSAL
EIGENVALUE CORRELATIONS

The two-point kernel allowing us to calculate all the glo-
bal and local characteristics for the random-matrix en-
sembles is determined as@1#

Kn~x,y!5
kn21

kn

cn~y!cn21~x!2cn~x!cn21~y!

y2x
, ~23!

wherekn is the leading coefficient of the orthogonal polyno-
mial Pn(x). Substitution of Eq.~22! into Eq. ~23! yields in
the large-n limit

Kn~x,y!5
2

pan

kn21

kn

1

y2x H F12S xanD
2G

3F12S yanD
2G J 21/4

@cosFn21~x!cosFn~y!

2cosFn21~y!cosFn~x!#, ~24!

where

Fn~x!5gn~x!1narccosS xanD . ~25!

In Eq. ~24! the fact was used that limn→`(an21 /an)51. Re-
ally, as was noted in the preceding section, the Freud-type
potentials exhibit a polynomial growth at infinity. Supposing
that at large positivex potentialV(x) roughly behaves as
xr (r.1) we immediately obtain the estimate@see Eq.~11!#
an→n1/r asn→`. Then, obviously, limn→`(an21 /an)51.
Taking into account this limit and carrying out the changing
of the integration variablej85jan /an21 in Eq. ~21! we eas-
ily obtain that in the large-n limit gn21(x)5gn(x), and as a
consequence

Fn21~x!5Fn~x!2arccosS xanD . ~26!

Now Eqs.~24! and ~26! give us

Kn~x,y!5
1

p~y2x! H F12S xanD
2GF12S yanD

2G J 21/4H cosFn~x!cosFn~y!
x2y

an
2sinFn~y!cosFn~x!F12S yanD

2G1/2
1sinFn~x!cosFn~y!F12S xanD

2G1/2J . ~27!

When deriving we have used the identity
limn→`kn21 /knan51/2 proved in Ref.@25#. We stress that
Eq. ~27! is valid for arbitraryx andy lying within the band
(2an ,1an).

Equation~27! allows us to determine smoothed~over the
rapid oscillations! connected correlationsnc(x,y) of the den-
sity of eigenvaluesnn(x) @12,20#,

nc~x,y!5^nn~x!nn~y!&2^nn~x!&^nn~y!&52Kn
2~x,y!,

xÞy ~28!

by averaging over intervalsuDxu!an and uDyu!an but still
containing many eigenlevels. Direct calculations yield the
simple universal relationship

nc~x,y!52
1

2p2

an
22xy

~x2y!2~an
22x2!1/2~an

22y2!1/2
, xÞy

~29!

with dependence on the potentialV(x) only through the end
point an of the spectrum.

Now we turn to the local properties of the two-point ker-
nel. Assuming that in Eq.~27! ux2yu!an and bothx and
y stay away from the~soft! band edgean we obtain

Kn~x,y!5
sin@Fn~x!2Fn~y!#

p~y2x!
, ~30!

whereFn(x) is defined by Eq.~25!. This two-point kernel
may be rewritten in locally universal form. Taking into ac-
count the integral representation

Fn~x!5
1

2
arccosS xanD2pE

0

x

van
~j!dj1

p

4
~2n21!,

~31!

van
~x!5

2

p2 PE
0

an jdj

j22x2
dV

dj

~an
22x2!1/2

~an
22j2!1/2

, ~32!
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proved in the Appendix, we see that Eq.~30! may be rewrit-
ten as

Kn~x,y!5
sin@p*x

yvan
~j!dj#

p~y2x!
. ~33!

The characteristic scale of the changing ofvan
(j) is

(van
21dvan

/dj)21;an , so that forux2yu!an @that has been

supposed in Eq.~30!# Eq. ~33! is reduced to the universal
form

Kn~x,y!5
sin@pn̄n~y2x!#

p~y2x!
, ~34!

with n̄n5van
1
2 (x1y) playing the role of the local density of

levels. Correspondingly, the local two-level cluster function
being rewritten in rescaled variabless ands8

Y2~s,s8!5S Kn
2~x,y!

^nn~x!&^nn~y!& D x5x~s!
y5y~s8!

5
sin2@p~s2s8!#

@p~s2s8!#2
~35!

proves the universal Wigner-Dyson level statistics in the uni-
tary random-matrix ensemble with Freud-type confinement
potentials ~here s5 n̄nx and s85 n̄ny are the eigenvalues
measured in the local mean-level spacing!.

IV. DENSITY OF LEVELS AND ONE-POINT GREEN’S
FUNCTION

The expression for density of levels is defined as

^nn~x!&5^trd~x2H!&5Kn~x,x!, ~36!

immediately follows from Eq.~30!:

^nn~x!&52
1

p

dFn

dx
5
1

p S n

~an
22x2!1/2

2
dgn

dx D ~37!

@see Eq.~25!#. Using Eqs.~13! and ~18!, and the parametri-
zationx5ancosu, we obtain the formula

^nn~x5ancosu!&

5
1

pansinu

d

du
@argD~e22V~ancosw!usinwu;eiu!1nu#,

~38!

which establishes the connection between the density of lev-
els in the random-matrix ensemble with the Freud-type con-
finement potential and the Szego¨ function for the corre-
sponding set of orthogonal polynomials Eq.~7!.

Another representation of the level density can be ob-
tained from Eqs.~34! and ~32!:

^nn~x!&5
2

p2 PE
0

an jdj

j22x2
dV

dj

~an
22x2!1/2

~an
22j2!1/2

. ~39!

This formula is rather interesting and deserves more at-
tention. Considering this expression as an equation for
dV/dx one can resolve it invoking the theory of integral
equations with a Cauchy kernel@26#:

PE
2an

1an^nn~x8!&
x2x8

dx85
dV

dx
. ~40!

Thus one can think that density of levels is a solution of the
integral equation

V~x!5E
2an

1an
dx8^nn~x8!& lnux2x8u1m, ~41!

with m being the ‘‘chemical potential.’’ It is no more than
the famous mean-field equation which, in our treatment, fi-
nally follows from the asymptotic formula Eq.~12! for the
orthogonal polynomials. Quite surprisingly, the Szego¨ func-
tion Eq. ~7! turns out to be closely related to the mean-field
approximation by Dyson@10#.

Now we can easily calculate the one-point Green’s func-
tion

Gp~x!5 K tr 1

x2H1 ip0 L
5E

2an

1an
dj

1

x2j1 ip0
^trd~j2H!&, ~42!

wherep561. The last integral can be rewritten as

Gp~x!5PE
2an

1an
dj

^nn~j!&
x2j

2 ipp^nn~x!&, ~43!

whence we obtain by means of Eqs.~39! and ~40!

Gp~x!5
dV

dx
2
2ip

p
PE

0

an jdj

j22x2
dV

dj

~an
22x2!1/2

~an
22j2!1/2

. ~44!

We would like to stress that both Eqs.~39! and~44! have
been obtained within the framework of the theory of polyno-
mials orthogonal with respect to the Freud measure. This
comment equally pertains to the mean-field Eq.~41!.

V. TWO-POINT CONNECTED GREEN’S FUNCTION

The two-point connected Green’s function is defined as

Gc
pp8~x,x8!5K tr 1

xp2H
tr

1

xp8
8 2H L 2K tr 1

xp2H L
3K tr 1

xp8
8 2H L , ~45!

wherexp5x1 ip0 andxp8
8 5x81 ip80 (p,p8561). It can

be rewritten in an integral form

Gc
pp8~x,x8!5E

2an

1anE
2an

1an djdh

~xp2j!~xp8
8 2h!

@^nn~j!nn~h!&

2^nn~j!&^nn~h!&#. ~46!

Recognizing that the quantity in parentheses is
^nn(j)nn(h)&c5^nn(j)&d(j2h)2Kn

2(j,h), we obtain the
formula
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Gc
pp8~x,x8!5E

2an

1an dj^nn~j!&

~xp2j!~xp8
8 2j!

1p2pp8Kn
2~x,x8!

1 ip@pL~x,x8!1p8L~x8,x!#2l~x,x8!,

~47!

where the following notations were used:

L~x,x8!5PE
2an

1an
dj

Kn
2~x,j!

x82j
, ~48!

l~x,x8!5PE
2an

1an
dj

L~j,x8!

x2j
. ~49!

The two-point kernelKn(x,x8) entering Eqs.~47! and~48! is
determined by Eq.~27!.

A. Smoothed connected two-point Green’s function

Let us consider the first integral Eq.~48!. Substituting Eq.
~27! into Eq. ~48! and taking into account that terms of the
type sinFn(j), cosFn(j), and sinFn(j)cosFn(j) oscillate
rapidly and, therefore, do not contribute into the integral over
j in the leading order inn@1, we have after some rearrange-
ments

L~x,x8!5
1

2p2

1

A12x2/an
2

3PE
2an

1an dj

~x82j!~x2j!2
1

A12j2/an
2 S 12

xj

an
2D ,
~50!

providedxÞx8. Formally, this integral is divergent thanks to
the double pole of the integrand}(x2j)22. It is easy to see
that this singularity is rather artificial and connected with the
fact that the conditionxÞj was supposed to be fulfilled
when neglecting rapid oscillations inj in the integrand of
Eq. ~48!. This is the reason why the integrand in Eq.~50!
displays incorrect behavior in the vicinityx5j. Actually, as
can be verified, the integrand is finite forx5j, and the cor-
responding integral is convergent. Moreover, direct compari-
son of Eq.~50! with results@12# shows that the equation in
question can be rewritten in the form

L~x,x8!5 PE
2an

1an dj

x82j
T2~j,x!, ~51!

where

T2~j,x!5K2~j,x!1^nn~j!&d~j2x! ~52!

is the two-level cluster function, and

K2~j,x!5
1

2

d^nn~j!&
dV~x!

~53!

is the two-point correlation function~the notations of Ref.
@12# have been used!. Then, taking into account Eqs.~51!,
~52!, and~49!, we obtain from Eq.~47! after some transfor-
mations

Gc
pp8~x,x8!5p2pp8Kn

2~x,x8!1 ipFpPE
2an

1an dj

x82j
K2~j,x!

1p8 PE
2an

1an dj

x2j
K2~j,x8!G

2PPE
2an

1anE
2an

1an djdh

~x2j!~x82h!
K2~j,h!.

~54!

Now we only have to calculate the integrals containingK2 .
The most proper way is to invoke the integral equation@12#

PE
2an

1an dj

x2j
d^nn~j!&5

d

dx
dV~x! ~55!

and definition Eq.~53!. Since Eqs.~53! and~55! yield iden-
tity

ipFpPE
2an

1an dj

x82j
K2~j,x!1p8 PE

2an

1an dj

x2j
K2~j,x8!G

2PPE
2an

1anE
2an

1an djdh

~x2j!~x82h!
K2~j,h!

52
1

2

1

~xp2xp8
8 !2

, ~56!

we finally arrive at the expression for the two-point con-
nected Green’s function

Gc
pp8~x,x8!5

1

2 H pp8 an
22xx8

~x2x8!2~an
22x2!1/2~an

22x82!1/2

2
1

~xp2xp8
8 !2 J . ~57!

Here we have used Eqs.~28! and~29!. Equation~57! is valid
for arbitraryxÞx8 lying within the band (2an ,1an). Uni-
versal relationships of this type were obtained in Ref.@20#.

B. Local connected two-point Green’s function

In the local regime, whenux2x8u!an , one cannot disre-
gard oscillations of the integrands in Eqs.~48! and ~49!.
Since in this energy scale the density of states^nn(x)& is a
slowly varying function and the two-point kernelKn(x,x8) is
universal Eq.~34! one obtains that@28#

L~x,x8!5
n̄n

x82x H 12
sin@2pn̄n~x82x!#

2pn̄n~x82x!
J ~58!

and

l~x,x8!5
sin2@pn̄n~x2x8!#

~x2x8!2
. ~59!

Then Eqs.~58!, ~59!, and~47! yield
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Gc
pp8~x,x8!5p2n̄nup2p8ud~x2x8!

1@pp821#
sin2@pn̄n~x2x8!#

~x2x8!2
1 i ~p82p!

3
sin@pn̄n~x82x!#cos@pn̄n~x82x!#

~x82x!2
. ~60!

This equation only depends on the local mean-level spac-
ing n̄n , and therefore it can be written down in universal
form. Introducing the normalized and rescaled two-point
connected Green’s function

gc
pp8~s,s8!5S Gc

pp8~x,x8!

^nn~x!&^nn~x8!&
D

x5x~s!
x85x8~s8!

, ~61!

wheres5 n̄nx ands85 n̄nx8 are the eigenvalues measured in
the local mean-level spacing, we obtain the following uni-
versal relationship:

gc
pp8~s,s8!5p2up2p8ud~s2s8!

1 i ~p2p8!
sin@p~s2s8!#

~s2s8!2
eip~s2s8!sign~p2p8!.

~62!

Note that an expression of this type was previously obtained
in Ref. @29# only for the Gaussian random-matrix ensemble
using supersymmetry formalism.

VI. EXTENSION FOR ERDÖ S-TYPE CONFINEMENT
POTENTIALS

All the results obtained above are valid for confinement
potentials exhibiting smooth polynomial growth at infinity
~see Sec. II! but they can be extended for anErdös-type
confinement potential whichgrows faster than any polyno-
mial at infinity ~see Ref.@27#, Ch. 2!.

Namely, let V(x) be even and continuous inx
P(2`,1`), d2V/dx2 be continuous in xP(0,1`),
dV/dx be positive in the same domain ofx and continuous at
x50. Moreover, let

T~x!511x
d2V/dx2

dV/dx
~63!

be positive and increasing in xP(0,1`) with
limx→10T(x).0 while limx→`T(x)5`, and

T~x!5O„~dV/dx!1/15… for x→`, ~64!

d2V/dx2

dV/dx
;
dV/dx

V~x!
and

ud3V/dx3u
dV/dx

<constS dV/dxV~x! D 2
~65!

for x large enough. The class of potentialsV(x) satisfying all
the above requirements is said to be of theErdös type. The
simple examples of Erdo¨s-type confinement potentials are~i!
V(x)5expk(uxua) with a.0 andk>1 ~here expk denotes the
exponent iteratedk times!; ~ii ! V(x)5exp@lna(g1x2)# with
a.1, andg large enough.

Polynomials orthogonal with respect to the Erdo¨s measure
daE5wE(x)dx5exp@22V(x)#dx ~hereV is of Erdös type!
have the same asymptotics@27# and, therefore, Eq.~22! re-
mains valid along with all the results obtained in Secs. III,
IV, and V.

VII. MATRIX MODELS WITH POSITIVITY
CONSTRAINTS ON EIGENVALUES

In the random-matrix theory of quantum transport@5,6#
the matrix model Eq.~2! appears with positivity constraints
on eigenvalues$x% ~maximum entropy models!. The con-
straintx>0 is an essential feature of those models that fol-
lows directly from the unitarity of the scattering matrix and
imposes the presence of the hard edge in the energy spectrum
of the matrix model. To our knowledge there is no rigorous
treatment of such a matrix model with a strong enough con-
finement potentialV(x) within the method of orthogonal
polynomials except for the generalized Laguerre ensembles
of random matrices@30#.

Below we show how the problems associated with the
maximum entropy model can be treated within the polyno-
mial approach in a very general case.

A. Polynomials orthogonal onx>0

Let the confinement potentialV(x) be of the Freud or
Erdös type defined on the whole real axisR, that is,V is a
monotonous function behaving at least asuxu11d (d.0) and
growing as or even faster than any polynomial at infinity,
and letPn(x) be a set of polynomials orthogonal onR with
respect to the measureda(x)5 exp$22V(x)%dx @see Eq.~5!#.
Then polynomials

Sn~x!5P2n~Ax! ~66!

form a set of polynomials orthogonal onR1 with the mea-
sure@31# das(x)5exp$22Vs(x)%dx,

E
0

`

Sn~x!Sm~x!das~x!5dnm , ~67!

where the confinement potential

Vs~x!5V~Ax!1 1
4 lnx ~68!

is a monotonous function that behaves at least asuxu
1
21d

(d.0) and can grow even faster than any polynomial at
infinity.

Equation~66! allows us to write down large-n asymptot-
ics for the introduced set of orthogonal polynomials. It is
straightforward to get from the results outlined in Sec. II and
the Appendix the following asymptotic formula@which is an
analogue of Eq.~16!#:

Sn~x!5A~2/p!
exp@Vs~x!#

~xbn!
1/4

1

@12x/bn#
1/4cosF̃n~x!,

~69!

wherexP(0,bn), and
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F̃n~x!5
1

2
arccos~Ax/bn!1pS n2

1

4D2pE
0

x

Vbn
~j!dj,

~70!

Vbn
~x!5

1

p2 PE
0

bn dh

h2x

dVs
dh

Ah/x
Abn2x

Abn2h
. ~71!

Here the soft band edgebn5a2n
2 . The equations obtained

above are the starting point of further analysis.

B. Two-point kernel and universal eigenvalue correlations

The two-point kernel determined by Eq.~23! can be
calculated provided ‘‘wave function’’ cn(x)
5exp@2Vs(x)#Sn(x). Substitution of Eq.~69! into Eq. ~23!
yields in the large-n limit

Kn~x,y!5
2

p

k̃n21

k̃n

1

~y2x!

1

~xy!1/4$@bn2x#@bn2y#%1/4

3@cosF̃n21~x!cosF̃n~y!

2cosF̃n21~y!cosF̃n~x!#, ~72!

if x and y lie within the band (0,bn). If at least one of the
arguments in the two-point kernel is negative, it is identically
zero ~due to the presence of the hard edge!. In Eq. ~72! k̃n
stands for the leading coefficient ofSn(x).

Taking into account the large-n identity

F̃n21~x!5F̃n~x!22 arccos~Ax/bn!, ~73!

we obtain

Kn~x,y!5
4

p

k̃n21

k̃ n

1

~y2x!

1

~xy!1/4$@bn2x#@bn2y#%1/4H cosF̃n~x!cosF̃n~y!
x2y

bn
2sinF̃n~y!cosF̃n~x!S ybnD

1/2S 12
y

bn
D 1/2

1sinF̃n~x!cosF̃n~y!S xbnD
1/2S 12

x

bn
D 1/2J . ~74!

The smoothed~over the rapid oscillations! connected corr-
elatornc(x,y) of the density of eigenvalues Eq.~28!

nc~x,y!52
1

2p2

bn~x1y!/22xy

~x2y!2AxyAbn2xAbn2y
, xÞy

~75!

manifests dependence on the potentialVs(x) only through
the soft edgebn of the spectrum.

The local properties of the two-point kernel are obtained
by assuming that in Eq.~74! ux2yu!bn and bothx and y
stay away from the hard edgex50 and soft edgex5bn

Kn~x,y!5
sin@p*x

yVbn
~j!dj#

p~y2x!
. ~76!

The characteristic scale of the changing ofVbn
(j) is of the

order ofbn , so that forux2yu!bn Eq. ~76! is reduced to the

universal form Eq.~34! with n̄n5Vbn
„

1
2 (x1y)… playing the

role of the local density of levels. Correspondingly, the local
two-level cluster functionY2(s,s8) being rewritten in re-
scaled variabless ands8 follows the universal form Eq.~35!
that proves the universal Wigner-Dyson level statistics in the
bulk of the spectrum for unitary random-matrix ensembles
with confinement potentialsVs(x).

C. Density of levels and one-point Green’s function

The density of levels is obtained from Eq.~76! in the limit
y→x:

^nn~x!&5
1

p2 PE
0

bn dh

h2x

dVs
dh S h

x D 1/2Abn2x

Abn2h
. ~77!

Considering this expression as an equation fordVs /dx one
can resolve it@26# arriving to the mean-field equation by
Dyson

Vs~x!5E
0

bn
dx8^nn~x8!& lnux2x8u1m, ~78!

where integration runs overx8P(0,bn). We once more stress
that the mean-field equation is a direct consequence of the
point-wise asymptotics for the corresponding orthogonal
polynomialsSn(x) which involve the Szego¨ function as a
starting point.

Correspondingly, the one-point Green’s function

Gp~x!5
dVs
dx

2
ip

p
PE

0

bn dh

h2x

dVs
dh S h

x D 1/2Abn2x

Abn2h
.

~79!

D. Connected two-point Green’s function

In the maximum entropy models the smoothed connected
two-point Green’s function can be calculated in the same
way as was done in Sec. V. The only difference is that the
integrals in Eqs.~47!–~49! and ~54! now run from 0 tobn .
Carrying out this integration with the two-point kernel
Kn(x,y) given by Eq.~74! we arrive at the universal formula
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Gc
pp8~x,x8!5

1

2 H pp8 ~bn/2! ~x1x8!2xx8

~x2x8!2Axx8Abn2xAbn2x8

2
1

~xp2xp8
8 !2 J . ~80!

In contrast to the smoothed connected two-point Green’s
function the local one is determined by the same formulas
Eqs.~60!–~62! providedx andy are far from both edges.

VIII. CONCLUSION

We have presented rigorous analytical consideration of
the matrix model given by the non-Gaussian distribution
functionP($x%) Eq. ~2! with a very general class of confine-
ment potentials V(x) within the framework of the
orthogonal-polynomials technique. Our treatment is equally
applied to the random-matrix models with the presence and
absence of the hard edge in the eigenvalue spectrum. We
have calculated with asymptotic accuracy the density of lev-
els, the one-point Green’s function, the two-point kernel, the
‘‘density-density’’ correlator, and the two-point Green’s
function over the all distance scale.

It was established that the two-point correlators in consid-
ered random-matrix model possess a high degree of univer-
sality. In the absence of the hard edge the universality is
observed for a very wide class of monotonous confinement
potentialsV(x) which behave at least asuxu11d (d.0) and
can grow as or even faster than any polynomial at infinity
~the case of the border level confinement whenV(x);uxu as
uxu→` has been treated in Ref.@32#!. In the presence of the
hard edge in the eigenvalue spectrum the universality holds
for the monotonous confinement potentialsVs(x) which be-
have at least asuxu1/21d (d.0) andcan grow faster than any
polynomial at infinity.

We have shown that in those unitary non-Gaussian
random-matrix models the density of levels and the one-
point Green’s function essentially depend on the measure,
i.e., on the explicit form of the confinement potential. In
contrast ~connected! the two-point characteristics of the
spectrum~‘‘density-density’’ correlator, two-point Green’s
function! are rather universal. Indeed, we have observed glo-
bal universality of smoothed two-point connected correlators
and local universality of those without smoothing over rapid
oscillations. In both cases the correlators were shown to de-
pend on the measure only through the end points of the spec-
trum ~global universality! or through the local density of
levels ~local universality!.

Rigorous polynomial analysis enabled us to recover the
results obtained before by different approximate methods
and to extend previously known results for a much wider
class of random-matrix ensembles with strong confinement
potentials irrespective of the presence or absence of a hard
edge. We have also established a local universal relationship
for the normalized and rescaled connected two-point Green’s

functiongc
pp8(s,s8) @see Eq.~62!#. Finally, an interesting and

quite surprising intimate connection between the structure of
the Szego¨ function and the mean-field equation that has been
revealed in the proposed formalism is worthy of notice.
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APPENDIX: INTEGRAL REPRESENTATION OF Fn„x…

To prove Eq.~31! let us calculate the first derivative of
gn(x) ~the calculations are similar to those done in Ref.@27#,
Ch. 11!. From Eq.~21! we obtain

dgn

dx
52

1

2p

x

~an
22x2!1/2

PE
2an

1an h~j!dj

~an
22j2!1/2~j2x!

1
1

2p
~an

22x2!1/2PE
2an

1an h~j!dj

~an
22j2!1/2~j2x!2

,

~A1!

whence

~an
22x2!1/2

dgn

dx

5
1

2p
PE

2an

1anh~j!dj

j2x S j

~an
22j2!1/2

1
~an

22j2!1/2

j2x D
52

1

2p
PE

2an

1an
h~j!dj

d

dj S ~an
22j2!1/2

j2x D . ~A2!

After integration by parts we have

dgn

dx
5

1

p~an
22x2!1/2

PE
0

an
dj

~an
22j2!1/2

j22x2
j
dh

dj
. ~A3!

Substituting Eq.~19! into Eq. ~A3! and using identity

PE
0

an dj

j22x2
1

~an
22j2!1/2

50 ~A4!

we obtain

dgn

dx
52

2

p~an
22x2!1/2

PE
0

an
dj

~an
22j2!1/2

j22x2
j
dV

dj

2
1

2~an
22x2!1/2

. ~A5!

The integral in Eq.~A5! may be handled as follows:

PE
0

an
dj

~an
22j2!1/2

j22x2
j
dV

dj

5PE
0

an jdj

j22x2
dV

dj

~an
22x2!1/2

~an
22j2!1/2

2
1

~an
22x2!1/2

3E
0

an jdj

~an
22j2!1/2

dV

dj
. ~A6!

Bearing in mind Eq.~11! and introducing the function
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van
~x!5

2

p2 PE
0

an jdj

j22x2
dV

dj

~an
22x2!1/2

~an
22j2!1/2

~A7!

the derivativedgn /dx can be rewritten as

dgn

dx
52pvan

~x!1S n2
1

2D 1

~an
22x2!1/2

. ~A8!

Further, noting from Eq.~21! that gn(0)50, we obtain the
integral representation

gn~x!52pE
0

x

van
~j!dj1S n2

1

2DarcsinS xanD , ~A9!

or, equivalently@see Eq.~25!#,

Fn~x!5
1

2
arccosS xanD2pE

0

x

van
~j!dj1

p

4
~2n21!.

~A10!
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